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requency Response Methods
nd Stability

In previous chapters we examined the use of test signals such as a step and a ramp
signal. In this chapter we consider the steady-state response of a system to a sinusoidal
input test signal. We will see that the response of a linear constant coefficient system
to a sinusoidal input signal is an output sinusoidal signal at the same frequency as the
input. However, the magnitude and phase of the output signal differ from those of the
Input sinusoidal signal, and the amount of difference is a function of the input
frequency. Thus we will be investigating the steady-state response of the system to a
sinusoidal input as the frequency varies.

We will examine the transfer function G(s) when s =jw and develop methods for

graphically displaying the complex number G(j)as w varies. The Bode plot is one of the

most powerful graphical tools for analyzing and designing control systems, and we will

cover that subject in this chapter. We will also consider polar plots and log magnitude

d phase diagrams. We will develop several time-domain performance measures in

of the frequency response of the system as well as introduce the concept of
ndwidth.



e frequency response of a system is defined as the steady-state response of the
stem to a sinusoidal input signal. The sinusoid is a unique input signal, and the
sulting output signal for a linear system, as well as signals throughout the system, is
inusoidal in the steady-state; it differs form the input waveform only in amplitude and
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS
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DIRECT POLAR PLOTS

obtain the direct polar plot of a system’s forward transfer function,

Step 1. The forward transfer function has the general form

K (1 +joT,)(1+joT,)---(1+joT,)
(jo)"(1 +joTi )1 +joT3)- - (1 +joT,)

For this transfer function the system type is equal to the value of m and
determines the portion of the polar plot representing the lim,, .y G(jo). The
low-frequency polar plot characteristic (as ® — 0) of the different system
types are summarized in Fig.

e following criteria are used to determine the key parts of the curve.
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The arrow on the polar plots-indicates the direction of increasing frequency.
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Step 2. The high-frequency end of the polar plot can be determined as
follows:

lim G(jo)=0 /(w—m — u)90°

(0 —r 00
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Step 3. The asymptote that the low-frequency end approaches, for aType 1
system, is determined by taking the limit as ® — 0 of the real part of the
transfer function.
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Step 4. The frequencies at the points of intersection of the polar plot with
the negative real axis and the imaginary axis are determined, respectively, by
setting

Im G(jo)] =0
Re G(jm)] =0
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Step 5. If there are no frequency-dependent terms in the numerator of
the transfer function, the curve is a smooth one in which the angle of G( jo)
continuously decreases as ® goes from 0 to oo. With time constants in the
numerator, and depending upon their values, the angle may not continuously
vary in the same direction, thus creating “dents” in the polar plot.
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Step 6. it is important to know the exact shape of the polar plot of G(jo)

in the vicinity of the —1 +0 point and the crossing point on the negative real axis.
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uency Response Plots
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Polar plot for G( jew) = Kljw( jot + 1). Note that w = == at the origin.



uency Response Plots
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